Påverkan av torvbrytning på fem vattendrag i Gävleborgs län

Magisterexamen, 20 poäng. av

Markus Karlsson

Institutionen för miljöanalys
Sveriges lantbruksuniversitet
Box 7050 SE 750 07 Uppsala

Handledare: Stefan Löfgren och Joakim Dahl

2006 Rapport 2006:23
Påverkan av torvbrytning på fem vattendrag i Gävleborgs län
Abstract

Between 1984 and 2006, water samples from the recipients to five different peat mines in north-central Sweden were collected. Samples were taken before and after the sedimentation dams as well. For comparison, samples were also obtained from nearby reference waters. Different chemical constituents including leaching of phosphorus and nitrogen, suspended solids, pH, conductivity, alkalinity, and colour were analyzed. Influences on the recipient water quality were found at all five peat mines. Nitrate was the only parameter that showed a statistically significant increase at all sites. Swedish Environmental Protection Agency classification system also indicated higher nitrogen classes downstream of all of the peat mines. The remaining parameters showed some statistical significance within each mine, but parallels could not be drawn between mines. Hydrology and the degree of peat humification appear to influence the water quality.

Summary

During the past 20 years, data from five peat mines in north-central Sweden were collected. The analytical results have been compiled into a database. This project aimed at analyzing the data and assessing the environmental impact of peat mining on the recipient waters. Specifically, focus was put on the chemical and physical parameters such as nitrogen, phosphorus, ammonium, organic carbon, pH, alkalinity, conductivity, colour, and suspended material.

The collected water samples were obtained from reference streams unaffected by the peat mine, drainage water from the peat mine just prior to and after the sedimentation dams as well as from the recipient streams further downstream. Tukey HSD test was used for analyzing statistical differences (p<0.05) in the water quality between sampling sites at each peat mine. The recipients were characterized according to the Swedish Environmental Protection Agency classification system.

Downstream the peat mines, the recipients had a greater buffering capacity (alkalinity), a higher pH and higher levels of nutrients (phosphorus and nitrogen). Total organic carbon (TOC), conductivity and suspended material varied between mines whereby no conclusions can be drawn on the effects of peat excavation. Analyses made with the Swedish Environmental Protection Agency classifications system also indicated higher nitrogen classes downstream of the peat mines.

An assessment of the monitoring program methods indicated non-optimal localization of some of the sample stations and too few sampling occasions for describing the annual water quality variations. In general, runoff measurements were lacking.
Sammanfattning

Under de senaste 20 åren har vattenprover insamlats från fem torvtäkter i Gävleborgs län. Provtagningen har ingått i ett kontrollprogram för respektive täkt med målsättningen att belysa torvbrytningens påverkan på vattendragen nedströms. De vattenkemiska parametrar som analyserats är totalkväve, ammonium, nitrat, totalfosfor, fosfat, COD, pH, alkalinitet, konduktivitet, färg och suspenderat material.

Vattenproverna har insamlats i inlopp/utlopp till torvtäkternas sedimentationsdammar, med syftet att visa dammarnas förmåga att fastlägga (retention) olika ämnen. Prover har också tagits i vattendragen innan och efter sammanflödet med torvtäktens dräneringsvatten, för att belysa eventuella vattenkemiska förändringar i recipienten. Analyser av statistiska skillnader (p<0,05) mellan provtagningspunkterna har gjorts med Tukey HSD test. Naturvårdsverkets bedömningsgrunder av sjöar och vattendrag använts har använts för att klassificera skillnader i vattenkvalitet mellan provpunkterna.

Resultaten visar att torvtäkternas recipierter uppvisar en högre buffert kapacitet (alkalinitet) och pH jämfört med de av torvtäkt opåverkade vattendragen. För näringsämnena kväve och fosfor återfanns högre halter i recipient, vilket visar att torvtäkternas har en gödande effekt. Påverkan på övriga kemiska parametrar varierade mellan torvtäkterna och därför kan inga generella slutsatser dras. Naturvårdsverkets bedömningsgrunder visar att torvtäkterna göder recipienterna så att tillståndsklassen för kväve ökar.

Kontrollprogrammens utformning uppvisar vissa brister i provtagningspunkternas lokalisering och nya lägen har därför föreslagits. En annan svaghet i kontrollprogrammen är att provtagningsfrekvensen är låg och att tillfälligt höga vattenflöden inte med säkerhet fångas upp av mätningarna. Vid dessa tillfällen kan stora mängder näringsämnen och suspenderat material potentiellt lämna torvtäkterna obemärkt. Avrinningen från täkten bestäms vanligtvis inte.
Innehållsförteckning

Abstract ..1
Summary ...1
Sammanfattning ..2
Innehållsförteckning...3
Inledning ..4
Syfte ...4
Hypotes ...4
Tov och torvtäkter ...5
 Vad är tov, myr, kärr och mosse? ..5
 Brytningsmetoder och användningsområden för tov ...5
 Torvmarkens hydrologi ...6
Dränering av torvmark ..7
Allmän påverkan på ytvatten i samband med torvbrytning ...8
Vattenkemiska effekter av torvtäkt ...9
 Syrgas ...9
 pH ..9
 Organiskt material (humus) ..10
 Kväve ..11
 Fosfor ..11
Vattenkemiska effekter av sedimentationsdammar ..12
Material och metoder ...14
 Utförande och avgränsningar ...14
 Provtagningpunkt i utsläpps- och recipientkontrollen ..14
Beskrivning av torvtäkterna ...14
 Torvtäkternas geografiska läge i Gävleborgs län ..15
 Karinmossen ..16
 Norrbomuren ..17
 Skråtmyran ...18
 Stormyran-Sidskogen ...19
 Näsmyran ...20
Vattenkemisk data ..21
Statistiska bearbetning och bedömning av vattenkemisk status ...21
Resultat ..22
 Karinmossen ..22
 Norrbomuren ..24
 Skråtmyran ...26
 Stormyran-Sidskogen ...28
 Näsmyran ..30
Diskussion ...33
 Provpunkternas placering ...33
 Måtprogrammens utformning ..33
 Sedimentationsdammarnas funktion ...34
 Torvtäkternas påverkan på recipienterna ..34
Vattenkvaliteten enligt Naturvårdsverkets bedömningsgrunder (1999)36
Sammanfattade förslag till förändringar av kontrollprogrammen ..37
Referenser ..38
Bilagor ..40
Inledning

Syfte

Den primära målsättningen för arbetet har varit att undersöka om torvbrytning vid de fem täkterna leder till någon förändring av vattenkemin i de recipier som påverkas av torvtäkternas dräneringsvatten. Tillstånd och påverkan har även klassats med hjälp av Naturvårdsverkets (1999) bedömningsgrunder för sjöar och vattendrag. Utformningen av kontrollprogrammen har studerats med syfte att lämna förslag till eventuella förbättringar.

Hypotes

Min hypotes har varit att det inte föreligger någon statistisk signifikant skillnad i vattenkemin mellan provpunkterna inom samma torvtäkt. Saknas signifikant skillnad mellan recipient och referens visar det att man inte kan påvisa vattenkemisk påverkan av torvtäkterna, i varje fall inte med de använda mätmetoderna. Statistiskt säkerställda skillnader mellan provpunkterna indikerar däremot att torvtäkterna ger vattenkemisk påverkan.
Torv och torvtäkter

Vad är torv, myr, kärr och mosse?

Torv är beteckningen på ett mer eller mindre nedbrutet växtmaterial som har ansamlats i fuktiga miljöer. Torv bildas i områden med syrebrist och där vattentillgången är riklig, vilket gör att en fullständig nedbrytning av det organiska materialet inte sker. Torvens kemiska innehåll beror på vad som tillförs torvtäkten från luft och mark. Nedbrytningsgraden (humifieringsgraden) av torven, påverkar också torvens kemiska sammansättning. En låghumifierad torv (organiskt material i tidigt nedbrytningsskede) innehåller en större andel cellulosa medan en höghumifierad torv (organiskt material i sent nedbrytningsskede) innehåller mer humussubstanser (www.torvforsk.se). En vanlig uppbyggnad av en torvmark är ett övre lager av låghumifierad vitmossetorv och ett nedre lager som består av mer eller mindre väl humifierad kärrtorv (starrarter). Myren tillväxer på höjden från ytan med cirka 0,5 mm per år. Torvmäktigheten kan bli upp till några meter, i undantagsfall mer (Möre, 2003). I Sverige är medelmäktigheten 1,7 m och 8 % av torvmarkarna har en mäktighet på mer än 5m och maxdjupet i svenska torvmarker är 18 m (Lundin, 2006)

Myrar bildas när sjöar växer igen och de kan indelas i mossar och kärr. En myrmark som har kärrvegetation tillförs partiklar och mineraler med yt- och grundvattnet som ansamlas i myren. Käret innehåller till stor del de ämnen som naturligt finns i markerna omkring myren, Ämnessammansättningen i myren kan variera både lokalt och regionalt. En ombrogen (nederbördsförsörj) mosse innehåller oftast mycket låga halter av ämnen från de omgivande markerna och små variationer uppvisas både lokalt och regionalt. Mossarnas övre lager får sina näringsämnen till stor del från regnvatten vilket leder till att mossområdena blir näringsfattiga. På grund av att mossarna får sina näringsämnen från nederbörd kan de mänskliga utsläppen som skett under de senaste århundradena spåras i torvmarkernas ytskikt. (www.torvforsk.se). Oftast består torvmyrarna av en kombination av mosse och kärr. Ett blott kärområde (lagg) återfinns ofta runt mossmarken.

Brytningsmetoder och användningsområden för torv

Bild 1: Stycketorv Karinmossen. (Foto: Markus Karlsson)

Torvmarkens hydrologi

Myrens förmåga att leda vatten varierar mycket i vertikaled på grund av torvens fysiska egenskaper. De översta torvlagren med låg humifieringsgrad har en stor andel porer (~97 % porositet). Vissa av porerna är sammanbundna med varandra, s.k. makroporer, som snabbt kan transportera undan vatten. Den djupare, höghumifierade torven har färre porer (~85 % porositet) (Grip och Rhode, 2000). När torv bryts ned minskar andelen stora porer och andelen små porer ökar. Det innebär att andelen vatten som blir hårdare bundet än vissningsgränsen (vatten som är så hårt bundet till jorden att växterna inte kan tillgodogöras sig det, motsvarande ett undertryck på ca 150 m vattenpelare) ökar från ca 5 % till ca 20 % mellan låg- och höghumifierad torv. I en torv finns 20 – 30 volymprocent vatten inneslutet i döda växtceller och i andra mer eller mindre slutna porer. Ytterligare 5-10 volymprocent av vattnet är adsorptivt bundet, vilket innebär att omsättningstiden för huvuddelen av vattnet blir lång, medan upphållstiden för det vatten som deltar i avrinningen blir relativt kort när den låghumifierade torven mättats. Skillnaden i fältkapacitet (den största vattenhalt marken förnår hålla kvar mot gravitationen efter fri dränring) mellan låg- och höghumifierad torv är stor. Torv av låg humifieringsgrad har en vattenhalt vid fältkapacitet på ca 30 % medan den höghumifierade har en fältkapacitet på drygt 60 % (Grip och Rhode, 2000).

Efter att tätorna dränerats och blivit körda på med maskiner ett tag, blir torven komprimerad (Klöve, 2001). Genom skörd av de övre torvlaggrarna kommer den höghumifierade torven närmare markytan. Den höghumifierade torven innehåller mycket vatten och mättas snabbt vid nederbörd, vilket kan leda till att ytavrinning uppstår (Simonson, 1987).
Dränering av torvmark

För att effektivt kunna bryta torv måste grundvattennivån i täkten sänkas genom dränering. Vanligt är att dikena grävs ca 1,2 m djupa med ca 20 meters mellanrum (tegdike) för att avvattna täkten. Inkommande vatten från omgivningen skärs av med kringliggande diken (täktdiken) runt torvtäkten (Klöve, 2001). Hur dikena är utformade och hur långa och djupa de är har betydelse för hur mycket suspenderande material som transporteras från täkten (Joensuu m.fl., 2002). Grävs djupa långa diken med branta kanter som skär ner i underliggande mineraljord medför det en ökad risk för erosion av både oorganiskt och organiskt material och framförallt om det underliggande lagret är lätteroderat (Marja-Aho och Koskinen, 1989). Andelen suspenderat material från torvtäkten är vanligtvis betydligt högre än vad man observerat på torvmark dränerad för skogsbruk (Klöve, 2001). Minerogent material sedimenteras oftast i vattendrag nedströms torvtäkten och omlagras successivt, medan organiskt material transportereras längre och sedimenteras i lugna vattenområden (Simonson, 1987).

Bild 2: Täktdike Karinnmossen. (Foto: Markus Karlsson)

Allmän påverkan på ytvatten i samband med torvbrytning

- grumling
- förändring i vattenfärg och ljusklimate
- ökad syrgastärning
- förändringar i bottensubstrat
- försämrad reproduktion för fisk
- minskad biodiversitet med avseende på bottensfauna
- övergödning

För nordiska, humusrika vatten är ammonium en faktor som kan begränsa algtillväxten (Klöve, 2001) och näst efter susponderat material är ökade halter av ammonium den mest påtagliga effekten av torvbrytning. Susponderat material ger upphov till sedimentation nedströms torvtäkt som kan påverka reproduktionen för fisk, bottensfaunan (Klöve, 2001), övergödning och därmed en ändrad biodiversitet (Klöve, 2000). Studier i en bäck nedströms torvtäkt Miltramossen visade på en omfattande uttransport av både organiska och minerogena partiklar. De minerogena

Bassängförsök med höga halter suspenderade torvpartiklar i vattnet, har visat att tillväxten för knottlarver och utvecklingen för sländlarver påverkats negativt. (Westling och Bengtsson, 1991).

Vattenkemiska effekter av torvtäkt

Syrgas

En effekt av torvbruk är att recipienten tillförs syreförbrukande substanser. Syrgas kan både tillförs och förbrukas genom biologisk aktivitet, den generellt grundläggande formeln för fotosyntes (syrgasproduktion) och respiration (syrgasförbrukning) är

\[
CO_2 + H_2O + \text{energi} \leftrightarrow O_2 + \text{organiskt material}
\]

När reaktionen går till höger produceras syre när den går mot väster förbrukas syre. Under den mörkare delen av året sker ingen större primärproduktion i sjöar och vattendrag. Om humusinslaget och andelen dött organiskt material är högt i vattnet sker dock en fortlöpande nedbrytning även under vinterhalvåret. Konsekvensen blir att halten syrgas i vattnet minskar kraftigt fram till våren (Broberg och Jansson, 1994).

Från skogsöknik av torvmarker uppmättes en ökad syrgastäring med 30 % (Simonson, 1987).

pH

Nedbrytning under syresatta förhållanden innebär en oxidation av det organiskt materialet, varvid ett stort antal hydroxyl- och karboxylsyragrupper bildas. Vätejoner i syragrupperna är löst bundna och kan lättfrigöras, d.v.s. de utgör syrorna i torven. Dessa kan fungera som jonbytare mellan vätejoner och baskanjoner (K⁺, Na⁺, Ca²⁺, Mg²⁺). En större andel baskanjoner ger ett högre pH. När vitmossor växer bildas ureonysyr, vilka är utmärkta jonbytare som kan fånga upp baskanjoner ur mycket svaga lösningar i t.ex. nederbörd. (Grip och Rodhe, 1994) När organiska material i myrmarken bryts ner frigörs ett stort antal baskanjoner (Prévost m.f., 1999).

Generellt kan utdikning av boreala torvtäkter höja pH (Åström m.f., 2001), ökningen sker oftast med ungefär en enhet (Prévost m.f., 1999).

Organiskt material (humus)

Höga humushalter är typiska för ytvattnen i våra nordiska skogs- och myrområden och beroende på halten färgar de ytvattnen gult till brunsvart. Humusen är vanligtvis vattenlös och endast några få procent uppträder i partikelform (Löfgren, m.fl., 2003). Färgen på partikelbunden humus i mark är oftast brun eller svart och består av svårnedbrytbara komplexa organiska kolföreningar, som bildas vid nedbrytning av organiskt material (Brady, 2002). I torvmarkernas övre lager finns det en stor mängd låghumifierad torv som är mer lättnedbrytbar än den höghumifierade torven i de djupare lagren. (Grip & Rodhe, 2000). Den låghumifierade torven kan därför avge mer vattenlös humus än djupare, mer nedbrutna lager.

![Bild 3. Färgat vatten i Ålboån recipient till Karinmossen. (Foto: Markus Karlsson)](image-url)
Kväve

Skogsmark har oftast ett stort och svårutnyttjat kväveförråd bundet till humusföreningar och annat organiskt material. Kväve är vanligtvis den begränsande tillväxtfaktorn för träd och andra växter i våra skogsekosystem.

Om organiskt bundet kväve omvandlas till ammonium och vidare till nitrat genom nitrifikation leder det till en ansamling av nitrat i det omättade skiktet. Vid regn sköljs nitratet ur de övre torvlagren och höga halter nitrat kan tillfälligt återfinnas i dikena (Klöve, 2001). Det föreligger ett samband mellan temperatur och andelen ammonium som återfinns i dikena, vilket visar att biologiska processer är involverade. Studier har påvisat att läckaget av ammonium dubblades vid dikning av torvmark och var höga även tre år efter dikning (Joensuu m.fl., 2002). Processer som kan sänka ammoniumhaltarna i dikesvatten, är växtupptag, nitrifikation till nitrat samt absorption till jord- och humuspartiklar i vattnet (Klöve, 2001).

Fosfor

I torvtäkter återfinns stigande fosforskonzentrationer med ökat grundvattendjup. Laggen utgör ett undantag, där värdena inte varierar med djupet. (Lundin och Bergquist, 1990) Variation i fosforhaltarna kan vid torvtäkter sammankopplas med andelen gammalt grundvattnet som dräneras från täkten. Fosfor har motsatta egenskaper jämfört mot kväve, dvs. att andelen fosfor som läcker ut med grundvattnet minskar under flödesepisoder. Men likt kväve så varierar fosforhalt i grundvattnet stort mellan områden inom samma torvtäkt (Klöve, 2000). Fosforhaltens variation i dikesvatten beror på mängden suspenderat material och andelen gammalt grundvattnet som tillförs. Dikning ökar mängden suspenderat material i recipienten (Åström m.fl., 2001). Sallantaus (1985) skriver att suspenderat material innehåller ca 0,1 % fosfor och uppskattade mängder suspenderat material från en torvtäkt kan.
variera mellan några ton upp till 30 ton/km². Fosformängden i dikena är oftast lite lägre än i grundvattnet på grund av att fosfor kan bindas till sediment, humuspartiklar i dikeskanter eller upptas biologiskt.

Sammanfattningsvis ser man att vid kraftiga regn ändras sammansättningen i utgående vatten från torvtäkter. Nitrathalterna, andelen suspenderat material och konduktiviteten ökar medan fosförhalten och pH sjunker. Hydrologin styr till stor del hur mycket näringsämnen som urlakas.

Vattenkemiska effekter av sedimentationsdammar

![Bild 4: Sedimentationsdamm i Norrbomuren](Foto: Markus Karlsson)

Vid kraftiga vår- och höstflöden, då en stor del av läckaget från torvtäkterna sker, fungerar reningen med sedimentationsdammar sämre (Klöve, 2001). Olika metoder har tagits fram för att försöka minska läckaget från torvtäkterna. Översilningsytor, kemisk utfällning, infiltration i sandmark mm har prövats. Både ekonomi och terräng sätter i flera fall stopp för användning av alternativa metoder (Klöve, 2000). Försök
med att kontrollera vattenflöden i torvtäkternas diken har visat sig kunna minska andelen suspenderat material från torvtäkten med 95 %. Med flödeskontroll regleras vattenflödena från dikena så att flödena ej blir för kraftiga. Studier har visat att det först och främst är erosionmaterial från dikeskanterna och dikesbotten som resuspenderas vid höga flöden, och bidrar till det suspenderande material som hamnar i recipienten (Klöve, 2000). Uttransporten förhindras genom att inte låta vattnet få strömma så kraftigt att erosionsmaterialet på dikesbotten resuspenderas. Med flödeskontroll minskas även uttransporten av fosfor eftersom en retention av fosfor sker i dikena vid låga flöden. Genom att förhindra höga flöden minskas även risken för en resuspension av utsedimenterad fosfor. En ökad halt oorganisk kväve kan motverkas genom denitrifikation eller upptag i biomassan när avrinningsvatten får längre uppehållstid i dikena. Även låga flöden kan innehålla höga koncentrationer av suspenderat material. Däremot behövs sedimenteringsdammarna även vid kontrollerade flöden i dikena (Klöve, 2000).
Material och metoder

Utförande och avgränsningar
Arbetet har utförts vid institutionen för miljöanalys, SLU (IMA) i samarbete med Länsstyrelsen i Gävleborgs län och har utformats som ett 20 poängs examensprojekt. Arbetet har avgränsats till att endast behandla vattenkemin med avseende på pH, suspenderat material (susp), totalkväve (N-tot), ammoniumkväve (NH₄-N), nitrat-nitritkväve (NO₂+NO₃-N), totalfosfor (P-tot), fosfatfosfor (PO₄-P), alkalinitet (Alk), konduktivitet (Kond). Effekter på recipientens biologiska tillstånd har ej omfattats av arbetet.

Provtagningspunkter i utsläpps- och recipientkontrollen
Recipientkontrollprogrammen har omformats två gånger, första gången 1987 och andra gången 1995. I samband med båda modifieringarna har provpunkterna fått nya betäckningar och i vissa fall ändrade geografiska lokaliseringar. Genom beslut och gamla kartor från länsstyrelsen i Gävleborgs läns arkiv har en sammanlänkning gjorts och en samlad benämning har införts för de punkter som har en likvärdig geografisk placering i vattendragen i förhållande till torvtäken.

Utsläppskontroll.
Inlopp: vattenproverna är insamlade innan sedimentationsdamm.
Utlopp: vattenproverna är insamlade direkt efter sedimentationsdammarna.

Recipientkontroll
Referens A: vattenproverna är insamlade uppströms torvtäken i samma vattendrag.
Referens B: vattenproverna är insamlade i ett parallellt biflöde till torvtäken eller uppströms torvtäken i det vattendrag som torvtäktens utlopp mynnar.
Nedströms A: vattenproverna är insamlade i recipienten nedströms torvtäken.
Nedströms B: vattenproverna är insamlade i recipienten nedströms torvtäken, men mät punkten är påverkad av ett annat större biflöde.

Beskrivning av torvtäkterna
Figur 2-6 beskriver provpunkternas lokalisering i förhållande till torvtäken. Kartbilderna beskriver vilka provstationer som använts i dagslägt. De schematiska bilderna beskriver överskådligt var kontrollprogrammens stationer varit lokalisade över tiden, och har fler provpunkter markerade än kartbilderna.
Torvtäkternas geografiska läge i Gävleborgs län

Figur 1: Torvtäkterna geografiska läge i Gävleborgs län
Karinmossen

Kommun: Gävle
Torvqualitet: Starrtorv men viss inblandning av vitmossetorv
Produktionsmetod: Stycketorv
Användning: Energi och växttorv
Produktionsareal: Koncessionsområdet 318 hektar. Undersökt area på myren är 250 hektar.
Produktionsvolym: 27 056 m³ på Karinmossen + 1751 m³ Gråtängarna

Uppgiftslämnare: Regina Jönsson
Reningsanläggning: En sedimentationsdamm
Jordart under torv: Gyttja och lera
Avvattning: Självfall
Utsläppskontroll: Inlopp, Utlopp (se figur 2)
Recipientkontroll: Referens B, Nedströms A och B (se figur 2)
Studerade variabler: pH, alkalinitet, CODCr, TOC, färg. Suspenderat material, P-tot, PO₄-P, N-tot, NO₂+NO₃-N, NH₄-N, Konduktivitet
Vattenföringsmätning: I Utlopp mellan 1989 - 1994

Figur 2: Karta Karinmossen (svarta fyrkanter markerar provpunkterna). Markeringar för inlopp och utlopp har ej angetts på kartan. Schematisk beskrivning av provtagningspunkternas placering i relation till torvtäkten i figuren till höger.
Norrbomuren

Kommun: Gävle
Torvqualitet: 57 % är starrtorv, 43 % vitmossetorv.
Produktionsmetod: Stycketorv och frästorv
Användning: Energi och växttorv
Produktionsareal: 300 ha, hela koncessionsområdet ca 350 ha
Produktionsvolym: 150 000 – 200 000 m³ årligt produktionsmål
2005 producerades 34 703 m³, stycketorv 13 100 m³ frästorv till energi och 146 120 m³ frästorv för växtdling. Sammanlagt 193 923 m³ (Miljörapport 2005)

Uppgiftslämnare: Regina Jönsson, UVAT (i underlag för samråd)
Reningsanläggning: Två stycken sedimentationsdammar
Jordart under torv: Huvudsakligen silt, men på några ställen är det sand och sandig morän som dominerar
Avvattning: Pumpning och självfall
Utsläppskontroll: Inlopp, Utlopp (se figur 3)
Recipientkontroll: Nedströms A. En provpunkt i ett dike ca 2,5 km nedströms tät, dikets lutning ca 1m/km.(se figur 3)

Studerade variabler: pH, alkalinitet, CODCr, TOC, färg, Suspenderat material, P-tot, PO₄-P, N-tot, NO₂+NO₃-N, NH₄-N, Konduktivitet

Provtagningsfrekvens: 3-5ggr/år sedan år 1988
Vattenföringsmätning: I utlopp 1-2 tillfällen per år

Figur 3: Karta Norrbomuren (svarta fyrkanter markerar provpunkterna). Markeringar för inlopp och utlopp har ej angetts på kartan. Schematisk beskrivning av provpunkternas placering i relation till torvtäkten i högra figuren.
Skråttmyran

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommun</td>
<td>Ljusdal</td>
</tr>
<tr>
<td>Torvkvälet</td>
<td>Starr- och vitmossetorv</td>
</tr>
<tr>
<td>Produktionsmetod</td>
<td>Stycketorv och frästorv</td>
</tr>
<tr>
<td>Användning</td>
<td>Energi och växttorv</td>
</tr>
<tr>
<td>Produktionsareal</td>
<td>Koncessionsområdet vid start 423 hektar (373+50 ha), i dagsläget bryts torv på 150 hektar</td>
</tr>
<tr>
<td>Produktionsvolym</td>
<td>72 000 m³ i årligt genomsnitt, under år 2005 bröts 14 290 m³ torv</td>
</tr>
<tr>
<td>Uppgiftslämnare</td>
<td>Stefan Östlund</td>
</tr>
<tr>
<td>Reningsanläggning</td>
<td>Fem stycken sedimentationsdammar, sammanlagd areal 1070m²</td>
</tr>
<tr>
<td>Jordart under torv</td>
<td>Lera</td>
</tr>
<tr>
<td>Avvattningsättning</td>
<td>Avvattningen sker genom självfall, vatten kommer att pumpas från täkten i slutet av brytningstiden</td>
</tr>
<tr>
<td>Utsläppspoint</td>
<td>Inlopp, Utlopp (se figur 4)</td>
</tr>
<tr>
<td>Recipientkontroll</td>
<td>Referens A, Nedströms A och B (se figur 4)</td>
</tr>
<tr>
<td>Studerade variabler</td>
<td>pH, alkalinitet, CODCr, TOC, färg, Suspenderat material, P-tot, PO₄-P, N-tot, NO₂+NO₃⁻N, NH₄⁻N, Konduktivitet</td>
</tr>
<tr>
<td>Provtagningsfrekvens</td>
<td>3-5 ggr/år från 1987-2006</td>
</tr>
<tr>
<td>Vattenföringsmätning</td>
<td>Ja, Proverna är tagna en gång per år i utlopp</td>
</tr>
</tbody>
</table>

Figur 4: Karta Skråttmyran (svarta fyrkanter markerar provpunkterna). Markeringar för inlopp och utlopp har ej angett på kartan. Schematisk beskrivning av provtagningspunkternas placering i relation till torvtäkten i figuren till höger.
Stormyran-Sidskogen

<table>
<thead>
<tr>
<th>Kommun</th>
<th>Ljusdal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torvkvärlighet</td>
<td>Starrtorv</td>
</tr>
<tr>
<td>Produktionsmetod</td>
<td>Stycketorv</td>
</tr>
<tr>
<td>Användning</td>
<td>Energi</td>
</tr>
<tr>
<td>Produktionsareal</td>
<td>Koncessionsområde 92 hektar, i dagsläget bryts torv på 48 hektar.</td>
</tr>
<tr>
<td>Produktionsvolym</td>
<td>Genomsnittlig produktion ca 20 000 m³/år. Produktionen under 2005 var 14 700 m³</td>
</tr>
<tr>
<td>Uppgiftslämnare</td>
<td>Stefan Östlund</td>
</tr>
<tr>
<td>Reningsanläggning</td>
<td>Två stycken sedimentsationsdammar, sammanlagd areal på 300 m².</td>
</tr>
<tr>
<td>Jordart under torv</td>
<td>Morän, lera och gyttja</td>
</tr>
<tr>
<td>Avvattnning</td>
<td>Genom pumpning (ej vintertid)</td>
</tr>
<tr>
<td>Utsläppskontroll</td>
<td>Inlopp, Utlopp (se figur 5)</td>
</tr>
<tr>
<td>Recipientkontroll</td>
<td>Referens B, Nedströms A och B (se figur 5)</td>
</tr>
<tr>
<td>Studerade variabler</td>
<td>pH, alkalinitet, CODcr, TOC, färg, Suspenderat material, P-tot, PO₄-P, N-tot, NO₂+NO₃-N, NH₄-N, Konduktivitet</td>
</tr>
<tr>
<td>Provtagningsfrekvens</td>
<td>3-5 ggr/år mellan år1987-2006</td>
</tr>
<tr>
<td>Vattenföringsmätning</td>
<td>Ja, en gång per år i utlopp</td>
</tr>
</tbody>
</table>

Figur 5: Stormyran-Sidskogen (svarta fyrkanter markerar provpunkterna). Markeringar för inlopp och utlopp har ej angetts på kartan. Schematisk beskrivning av provtagningspunkternas placering i relation till torvtäkten i figuren till höger.
Näsmyrans

<table>
<thead>
<tr>
<th>Kommun</th>
<th>Ljusdal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torvkvalitet</td>
<td>Starr- och vitmossetorv</td>
</tr>
<tr>
<td>Produktionsmetod</td>
<td>Stketorv och frästorv</td>
</tr>
<tr>
<td>Användning</td>
<td>Energi- och växtorv</td>
</tr>
<tr>
<td>Produktionsareal</td>
<td>Koncessionsområdet 196 hektar. Ursprunglig yta för torvproduktionen 120 hektar, i dagslaget bryts torv på 60 ha.</td>
</tr>
<tr>
<td>Produktionsvolym</td>
<td>Årlig produktion ca 45 000 m³, under 2005 producerades 9500 m³ stycketorv.</td>
</tr>
<tr>
<td>Uppgiftslämnare</td>
<td>Stefan Östlund</td>
</tr>
<tr>
<td>Reningsanläggning</td>
<td>Fyra stycken sedimentationsdammar, sammanlagd areal 5,5 hektar</td>
</tr>
<tr>
<td>Jordart under torv</td>
<td>Silt och morän</td>
</tr>
<tr>
<td>Avvattnning</td>
<td>Genom självfall</td>
</tr>
<tr>
<td>Utsläppskontroll</td>
<td>Inlopp, Utlopp (se figur 6)</td>
</tr>
<tr>
<td>Recipientkontroll</td>
<td>Referens B, Nedströms B (se figur 6)</td>
</tr>
<tr>
<td>Studerade variabler</td>
<td>pH, alkalinitet, CODCr, TOC, färg, Suspenderat material, P-tot, PO₄-P, N-tot, NO₂+NO₃-N, NH₄-N, Konduktivitet</td>
</tr>
<tr>
<td>Provtagningsfrekvens</td>
<td>3-5 ggr/år mellan år 1987-2006</td>
</tr>
<tr>
<td>Vattenföringsmätning</td>
<td>Ja, vid provtagningstillfälle fram till år 2000 i två punkter, efter år 2000 en gång per år i utlopp</td>
</tr>
</tbody>
</table>

![Figur 6a: Karta Näsmyrans (svarta fyrkanter markerar provpunkterna). Markeringar för inlopp och utlopp har ej angetts på kartan. Figur 6b återfinns på nästa sida.](image-url)
Vattenkemisk data

Statistiska bearbetning och bedömning av vattenkemisk status

Innan dataserierna analyserades statistiskt logaritmerades mätvärdena (ej pH) för att så långt möjligt normalförda fördelningarna på analysresultaten för respektive parameter och mätstation. En variant på t-test Tukey HSD test (Statistica 7.1) har använts för att testa om det förelåg statistisk signifikant skillnader (p<0,05) mellan provtagningsstationerna för de olika parametrarna. För att grafiskt visa skillnader i halter mellan provtagningsstationerna har ”Box and Whisker”-diagram (Statistica, 7.1) använts. Bedömningen av vattenkemisk status har beräknats på medelvärden för hela mätserierna för respektive parameter och provpunkt. Medelvärdena har sedan jämförts mot Naturvårdsverkets bedömningsgrunder för sjöar och vattendrag (Naturvårdsverket 1999).
Resultat

Karinmossen
Statistiskt signifikanta skillnader (p<0,05) mellan provtagningspunkterna förelåg för följande variabler:

Referens B - Utlopp
Högre halt i utlopp för: suspenderat material, alkalinitet, konduktivitet, färg, TOC, N-tot, NH₄-N

Referens B - nedströms A
Högre halt i nedströms A för: suspenderat material, alkalinitet, konduktivitet, färg, TOC, N-tot, NH₄-N, NO₂+NO₃-N

Referens B – nedströms B
Högre halt i referens B för: konduktivitet

Utlopp - nedströms A
Högre halt i utlopp för: NH₄-N, N-tot,
Högre värde i nedströms A för: pH

Utlopp – nedströms B
Högre halt i utlopp för: suspenderat material, alkalinitet, konduktivitet, färg, TOC, NH₄-N, N-tot

Nedströms A – nedströms B:
Högre halt i nedströms A för: suspenderat material, alkalinitet, konduktivitet, färg, TOC, N-tot, NH₄-N, NO₂+NO₃-N

Inlopp – Utlopp
Ingen parameter uppvisade statistiskt signifikanta skillnader mellan mätpunkterna. Endast TOC och suspenderat material har analyserats.
Figur 7: Logaritmen för alkalinitet (mekv/l) vid de olika provtagningsstationerna i Karinmossen. Mean = medelvärde, SE (standard error) = medelavvikelsen från medelvärdet för ett stickprov.

Figur 8: Logaritmen för N-tot (µg/l) vid de olika provtagningsstationerna i Karinmossen. Mean = medelvärde, SE = SE (standard error) = medelavvikelsen från medelvärdet för ett stickprov.

Vattnets buffertkapacitet (alkaliniteten, Figur 7) ger en tämligen representativ bild för skillnaderna i vattenkemi mellan de olika provtagningspunkterna vid Karinmossen. Halterna i utlopp och nedströms A var i huvudsak lika. Endast NH₄-N, N-tot och pH upprivade statistiskt signifikanta skillnader med högre kvävehalter (NH₄-N, N-tot) och pH i utloppet från täkten jämfört med nedströms A. Båda dessa stationer upprivade statistiskt signifikanta skillnader jämfört med nedströms B och referens B med avseende på erosionsmaterial (suspenderat material), organiskt
material, färg, kväve (NH₄-N och N-tot) och vattnets buffertkapacitet (alkalinitet). Både utlopp och nedströms A uppvissade normalt högre halter än nedströms B och referensstationen. Intressant att notera är att för totalfosfor är det ingen av provpunkterna som uppvissar statistiskt signifikanta skillnader. Resultaten indikerar att torvtäkten ökar halterna erosionsmaterial, humus, kväve (Figu 8) och buffertkapacitet i recipienten, men att denna effekt med undantag för kväve i stort sett klingat av vid nedströms B. Effekten på vattenkemin vid nedströms B av det biflöde som mynnar uppströms provtagningspunkten är dock oklar. Nedströms B summerar effekten av torvtäkten och detta biflöde. Sedimentationsdammen förefaller inte att signifikant minska utflödet av suspenderat material och TOC från täkten.

Vattnets surhetstillstånd (pH) klassas som nära neutralt vid samtliga provpunkter, vilket är att förvänta eftersom alkaliniteten visade på mycket god buffertkapacitet. Totalfosforhalterna var höga vid samtliga provpunkter och vattnen klassas som eutrofa. Både utloppet från täkten och nedströms A bedömdes ha mycket höga kvävehalter, medan nedströms B och referensstationen bedömdes ha höga kvävehalter. Samtliga provpunkter bedömdes ha starkt färgat vatten och mycket hög syretäring mätt som TOC.

Tabell 1: Medelhalter för olika ämnen i utsläpps- och recipientkontrollen vid Karinmossen.

<table>
<thead>
<tr>
<th>Karinmossen</th>
<th>Referens</th>
<th>Inlopp</th>
<th>Utlopp</th>
<th>Nedströms A</th>
<th>Nedströms B</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7,04</td>
<td>6,88</td>
<td>7,1</td>
<td>7,06</td>
<td></td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0,85</td>
<td>1,7</td>
<td>1,43</td>
<td>0,65</td>
<td></td>
</tr>
<tr>
<td>N-tot µg/l</td>
<td>1220</td>
<td>2400</td>
<td>1820</td>
<td>990</td>
<td></td>
</tr>
<tr>
<td>NO₂+NO₃-N µg/l</td>
<td>287</td>
<td>256</td>
<td>414</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>NH₄-N µg/l</td>
<td>145</td>
<td>1070</td>
<td>532</td>
<td>93,2</td>
<td></td>
</tr>
<tr>
<td>P-tot µg/l</td>
<td>41,3</td>
<td>30,8</td>
<td>38,6</td>
<td>29,7</td>
<td></td>
</tr>
<tr>
<td>PO₄-P µg/l</td>
<td>10,9</td>
<td>9,94</td>
<td>12,9</td>
<td>11,6</td>
<td></td>
</tr>
<tr>
<td>Färg Pt/l</td>
<td>208</td>
<td>341</td>
<td>307</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Susp. material mg/l</td>
<td>5,45</td>
<td>32,2</td>
<td>12,9</td>
<td>20,3</td>
<td>6,26</td>
</tr>
<tr>
<td>TOC mg/l</td>
<td>22,8</td>
<td>35,7</td>
<td>27,7</td>
<td>28,1</td>
<td>21,9</td>
</tr>
<tr>
<td>Konduktivitet mS/m</td>
<td>16,2</td>
<td>19,4</td>
<td>20,2</td>
<td>12,5</td>
<td></td>
</tr>
</tbody>
</table>

Klass

- 1
- 2
- 3
- 4
- 5

Norrebomuren

Statistiskt signifikanta skillnader (p<0,05) mellan provtagningspunkterna förelåg för följande variabler:

Inlopp – utlopp

Ingen parameter uppvissade statistiskt signifikanta skillnader mellan mätpunkterna. Endast TOC och suspenderat material har analyserats.

Utlopp - nedströms A

Högre halt/värde i utlopp för: suspenderat material, pH, färg, N-tot, NO₂+ NO₃-N, NH₄-N, P-tot, PO₄-P.
Figuur 8: Logaritmen för N-tot (µg/l) vid de olika provtagningsstationerna i Norrbomuren. Mean = medelvärde, SE (standard error) = medelavvikelsen från medelvärdet för ett stickprov.

Figuur 9: Logaritmen för P-tot (µg/l) vid de olika provtagningsstationerna i Norrbomuren. Mean = medelvärde, SE (standard error) = medelavvikelsen från medelvärdet för ett stickprov.

Näringsämnen totalkäve och totalfosfor (Figuur 8 och 9) ger en tämligen representativ bild förskillnaderna i vattenkemi mellan de båda provtagningspunkterna vid Norrbomuren. Halterna var för suspenderat material, pH, färg, N-tot, NO₂+NO₃-N, NH₄-N, P-tot, PO₄-P statistiskt signifikanta skilda med högre halter i utloppet från täkten jämfört med nedströms A. Att stationerna skiljer sig signifikant visar att torvtäkten påverkar sitt närområde med förhöjda halter erosionsmaterial och näringsämnen. Sedimentationsdammen minskar inte utflödet av suspenderat material och TOC från täkten signifikant.
Vattnets surhetstillstånd (pH) klassas som svagt surt vid båge provpunkterna, men alkaliniteten visade på en mycket god buffertkapacitet vilket indikerar att ett bra surhetstillstånd i utgående vatten. Totalfosforhalterna var höga vid samtliga provpunkter och vattnen klassas som eutrofa. Utloppet från täkten bedömdes ha en mycket hög halt av totalväve och nedströms A bedömdes ha höga halt av totalväve. Samtliga provpunkterna i Norrbomuren hade starkt färgat vatten och mycket hög syretrång mätt som TOC.

<table>
<thead>
<tr>
<th>Norrbomuren</th>
<th>Inlopp</th>
<th>Ullopp</th>
<th>Nedströms A</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6,54</td>
<td>6,71</td>
<td>6,71</td>
</tr>
<tr>
<td>Alkalinitet mekv/l</td>
<td>0,48</td>
<td>0,45</td>
<td>0,45</td>
</tr>
<tr>
<td>N-tot µg/l</td>
<td>1760</td>
<td>1009</td>
<td>1009</td>
</tr>
<tr>
<td>NO₂+NO₃-Nµg/l</td>
<td>217</td>
<td>187</td>
<td>187</td>
</tr>
<tr>
<td>NH₄-N µg/l</td>
<td>682</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>P-tot µg/l</td>
<td>49,5</td>
<td>28,9</td>
<td>28,9</td>
</tr>
<tr>
<td>PO₄-P µg/l</td>
<td>73,1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Färg Pt/l</td>
<td>275</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>Susp-material mg/l</td>
<td>37,2</td>
<td>12,3</td>
<td>4,32</td>
</tr>
<tr>
<td>TOC mg/l</td>
<td>22,9</td>
<td>28,2</td>
<td>29,3</td>
</tr>
<tr>
<td>Konduktivitet mS/m</td>
<td>9,36</td>
<td>8,82</td>
<td>8,82</td>
</tr>
</tbody>
</table>

Klass

| 1 | 2 | 3 | 4 | 5 |

Skåttmyran

Statistiskt signifikanta skillnader (p<0,05) mellan provtagningspunkterna förelåg för följande variabler:

Referens - utlopp
Högre halt/värde i utlopp för: alkalinitet, pH, färg, TOC, N-tot, NH₄-N, NO₂+ NO₃-N, P-tot, PO₄-P

Referens - nedströms A
Högre halt i nedströms A för: NH₄-N, NO₂+ NO₃-N, P-tot

Referens - nedströms B
Högre halt I nedströms B för: N-tot, NH₄-N, NO₂+NO₃-N, P-tot

Utlopp – nedströms A
Högre halt/värde i utlopp för: alkalinitet, pH, konduktivitet, färg, TOC, N-tot, NH₄-N, NO₂+NO₃-N, P-tot, PO₄-P

Utlopp – nedströms B
Högre halt/värde i utlopp för: alkalinitet, pH, konduktivitet, färg, TOC, N-tot, NH₄-N, NO₂+NO₃-N, P-tot, PO₄-P. Högre halt i nedströms B för: suspenderat material

Nedströms A – nedströms B:
Ingen parameter uppvisar signifikant skillnad mellan mätpunkterna

Inlopp – utlopp
Högre halt i inlopp för: N-tot, NH₄-N
Högre halt/värde i utlopp för: pH. Totalfosför och fosfat har ej analyserats.
Vattnets buffertkapacitet (alkaliniteten, Figur 10) ger för Skråttmyran en tämligen representativ bild för skillnaderna i vattenkemi mellan de olika provtagningspunkterna. Utloppet från sedimentationsdammen upprisade signifikant högre halter för samtliga parametrar förutom suspenderat material. Referensen utmärker sig genom att ha signifikant lägre halter av näringsämnen N-tot, NH₄-N, NO₂+NO₃-N, P-tot (Figur 11) än proppunktorna som ligger efter torvtäkten. Mellan nedströms A och nedströms B förelåg ingen skillnad i vattenkemin. Resultaten indikerar att torvtäkten påverkar recipienten med ökade halter av erosionsmaterial, humus, näringsämnen samt alkalinitet. Sedimentationsdammen minskar statistiskt
signifikant utflödet av kväve från täkten, medan det högre pH-värdet i utloppspunkten sannolikt är en konsekvens av att koldioxid vädrats ur i dammen.

Vattnets surhetstillstånd (pH) klassades som nära neutralt vid utloppet medan övriga provpunkter klassades som svagt sura. En mycket god buffertkapacitet upprivas vid samtliga provpunkter utom referensen som bedömdes ha en god buffertkapacitet. Totalfosforhalterna var höga vid utlopp, nedströms A, nedströms B och vattnen klassas som eutrofa. Referensens totalfosforhalt benämns som mättligt hög och klassas som mesotrof. Utloppet och inlopp från torvtäkten bedömdes ha en mycket hög halt totalkväve medan övriga stationer upprivas en hög halt. Samtliga provpunkter bedömdes ha starkt färgat vatten. Syretäringen (TOC) i utloppet och inloppet till sedimentationsdammen bedömdes som mycket hög, medan referensen och övriga stationer nedströms torvtäkten bedömdes som hög.

<table>
<thead>
<tr>
<th>Skråttmyran</th>
<th>Referens</th>
<th>Inlopp</th>
<th>Utlopp</th>
<th>Nedströms A</th>
<th>Nedströms B</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.55</td>
<td>6.65</td>
<td>6.87</td>
<td>6.59</td>
<td>6.54</td>
</tr>
<tr>
<td>Alkalinitet mekv/l</td>
<td>0.19</td>
<td>0.7</td>
<td>0.67</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>N-tot µg/l</td>
<td>751</td>
<td>4140</td>
<td>2220</td>
<td>760</td>
<td>833</td>
</tr>
<tr>
<td>NO₂⁺NO₃⁻N µg/l</td>
<td>73.7</td>
<td>435.12</td>
<td>383</td>
<td>122</td>
<td>127</td>
</tr>
<tr>
<td>NH₄-N µg/l</td>
<td>106</td>
<td>2130</td>
<td>1340</td>
<td>125</td>
<td>156</td>
</tr>
<tr>
<td>P-tot µg/l</td>
<td>20.6</td>
<td></td>
<td>47.7</td>
<td>34.4</td>
<td>28.1</td>
</tr>
<tr>
<td>PO₄⁻P µg/l</td>
<td>6.52</td>
<td></td>
<td>18</td>
<td>7.21</td>
<td>8.58</td>
</tr>
<tr>
<td>Färg Pt/l</td>
<td>166</td>
<td>209</td>
<td>255</td>
<td>181</td>
<td>182</td>
</tr>
<tr>
<td>Susp-material mg/l</td>
<td>7.06</td>
<td>47.5</td>
<td>12.5</td>
<td>30.9</td>
<td>21.1</td>
</tr>
<tr>
<td>TOC mg/l</td>
<td>13.7</td>
<td>22.2</td>
<td>21.9</td>
<td>14.9</td>
<td>15.6</td>
</tr>
<tr>
<td>Konduktivitet mS/m</td>
<td>4.28</td>
<td>9.63</td>
<td>10.2</td>
<td>4.6</td>
<td>4.68</td>
</tr>
</tbody>
</table>

Stormyran-Sidskogen

Statistiskt signifikanta skillnader (p<0,05) mellan provtagningspunkterna förelåg för följande variabler:

Referens B - utlopp
Högre värde i referens för: pH
Högre halt i utlopp för: suspenderat material, alkalinitet, konduktivitet, färg, TOC, N-tot, NH₄-N, NO₂⁺NO₃⁻N, P-tot

Referens B –nedströms B
Högre halt i nedströms B för: NO₂⁺NO₃⁻N, alkalinitet

Utlopp – nedströms B
Högre halt i utlopp för: suspenderat material, alkalinitet, konduktivitet, färg, N-tot, NO₂⁺NO₃⁻N, NH₄-N, P-tot
Högre värde i nedströms B för: pH

Inlopp – utlopp
Ingen parameter upprivas statistiskt signifikanta skillnader mellan mätpunkterna. Endast TOC och suspenderat material har analyserats.
Figur 12: Logaritmen för alkalinitet (mekv/l) vid de olika provtagningsstationerna i Stormyran-Sidskogen.
Mean = medelvärde, SE (standard error) = medelavvikelsen från medelvärdet för ett stickprov.

Vattnets buffertkapacitet (alkaliniteten, Figur 12) och totalkvävehalt (N-tot, Figur 13) ger en tämligen representativ bild för skillnaderna i vattenkemi mellan de olika provtagningspunkterna vid Stormyran-Sidskogen. Halterna i utloppet var statistiskt signifikant högre än i referensen för samtliga parametrar förutom pH som var något lägre i referensen. Mellan utlopp och nedströms B var det endast TOC och fosfatfosfor som inte uppräknade statistiskt signifikanta skillnader. Utloppet uppräknade generellt högre halter än nedströms B. Referens B och nedströms B uppräknade signifikanta skillnader mellan NO₂⁺NO₃⁻-N och alkalinitet, de högre värdena återfanns vid nedströms B (Figur 12 och 13). Resultaten indikerar att torvtäkten tillför recipienten både näringsämnen, suspenderat material, humusämnen och en större
buffertkapacitet. Sedimentationsdammen minskar inte signifikant utflödet av suspenderat material och TOC från täkten.

Vattnets surhetstillstånd (pH) klassades som nära neutralt i provpunkten nedströms B. I utloppet och referens B bedömdes surhetstillstånd som svagt surt. Alkaliniteten, d.v.s. buffertkapaciteten, klassades som mycket god i utloppet, medan den i nedströms B och referens B klassades som god. Totalfosforhalterna var måttligt höga i utloppet och vattnet beskrivs som eutroft. Nedströms B och referensen bedömdes ha en låg halt av totalfosfor med beskrivningen oligotrof. Totalvävehalterna bedömdes som höga i utloppet från sedimentationsdammen, som måttligt höga nedströms B och som låga vid referens B. Utloppet bedömdes ha starkt färgat vatten medan referensen och nedströms B klassades som betydligt färgade. Syretäringen, mätt som TOC, bedömdes som måttligt höga i samtliga provtagningsstationer förutom vid inloppet där TOC-halten klassades som hög.

Tabell 4: Medelhalter för olika ämnen i utsläpps- och recipientkontrollen vid Stormyran-Sidskogen.

<table>
<thead>
<tr>
<th>Stormyran-Sidskogen</th>
<th>Referens B</th>
<th>Inlopp</th>
<th>Utlopp</th>
<th>Nedströms B</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6,79</td>
<td>6,6</td>
<td>6,67</td>
<td>6,88</td>
</tr>
<tr>
<td>Alkalinitet mekv/l</td>
<td>0,13</td>
<td>0,25</td>
<td>0,15</td>
<td></td>
</tr>
<tr>
<td>N-tot µg/l</td>
<td>284</td>
<td>1080</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>NO₃+NO₂-N µg/l</td>
<td>22,9</td>
<td>233</td>
<td>29,5</td>
<td></td>
</tr>
<tr>
<td>NH₄-N µg/l</td>
<td>15,5</td>
<td>302</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>P-tot µg/l</td>
<td>11,9</td>
<td>24,3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>PO₄-P µg/l</td>
<td>3,33</td>
<td>3</td>
<td>3,37</td>
<td></td>
</tr>
<tr>
<td>Färg Pt/l</td>
<td>92,7</td>
<td>126</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Susp-material mg/l</td>
<td>3,4</td>
<td>10</td>
<td>13,8</td>
<td>2,9</td>
</tr>
<tr>
<td>TOC mg/l</td>
<td>8,33</td>
<td>12,9</td>
<td>10,9</td>
<td>7,05</td>
</tr>
<tr>
<td>Konduktivitet mS/m</td>
<td>2,98</td>
<td>5,21</td>
<td>3,15</td>
<td></td>
</tr>
</tbody>
</table>

Klass

1 2 3 4 5

Näsmyran

Statistiskt signifikanta skillnader (p<0,05) mellan provtagningspunkterna förelåg för följande variabler:

Referens B – utlopp:
Högre halt i referens B för: färg
Högre halt i utlopp för: alkalinitet, konduktivitet, N-tot, NH₄-N, NO₃+NO₂-N, P-tot, PO₄-P

Referens B - nedströms B
Högre halt i nedströms B för: NO₃+NO₂-N

Utlopp – nedströms B:
Högre halt i utlopp för: suspenderat material, alkalinitet, N-tot, NO₃+NO₂-N, NH₄-N, P-tot, PO₄-P, konduktivitet
Högre halt i nedströms B för: färg

Inlopp – utlopp:
Högre halt i inlopp för: TOC Endast TOC och suspenderat material har analyserats.
Figur 14: Logaritmen för alkalinitet (µg/l) vid de olika provtagningsstationerna i Näsmyran. Mean = medelvärde, SE (standard error) = medelavvikelsen från medelvärdet för ett stickprov.

Figur 15: Logaritmen för P-tot (µg/l) vid de olika provtagningsstationerna i Näsmyran. Mean = medelvärde, SE (standard error) = medelavvikelsen från medelvärdet för ett stickprov.

Vattnets buffertkapacitet och total fosforhalt (Figur 14 och 15) ger en tämligen representativ bild för skillnaderna i vattenkemi mellan de olika provtagningspunkterna vid Näsmyran. Utloppet uppvisade statistiskt signifikant högre halter jämfört med referens B och nedströms B för samtliga parametrar förutom för pH och TOC. För referens B och nedströms B var det signifikanta skillnader endast för NO₂⁺NO₃-N med högre halter i nedströms punkten. Resultatet indikerar att täkten vid Näsmyran i huvudsak påverkat recipienten genom tillförsel av NO₂⁺NO₃-N. För Näsmyran var det statistisk signifikant skillnad för TOC mellan utlopp och inlopp. Sedimentationsdammen förefaller att signifikant minska utflödet av TOC från täkten.
Vattnets surhetstillstånd (pH) klassades som svagt surt vid samtliga provpunkter och samtliga mätstationer bedömdes ha god buffertkapacitet Totalfosforhalterna var mycket höga vid utloppet och vattnet klassades som eutroft. Nedströms B och referens B hade en måttligt hög totalfosförhalt och vattendragen klassades som mesotrofa. Utloppet från torvtäkten bedömdes ha mycket höga totalkvasinhalter, medan nedströms B och referensstation B bedömdes ha måttligt höga totalkvasinhalter. Samtliga provpunkter utom utloppet bedöms ha starkt färgat vatten och måttligt hög syretäring mätt som TOC, förutom vid inloppet där syratäringen var hög.

<table>
<thead>
<tr>
<th>Nämyran</th>
<th>Referens B</th>
<th>Inlopp</th>
<th>Utlopp</th>
<th>Nedströms B</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6,72</td>
<td>6,78</td>
<td>6,72</td>
<td></td>
</tr>
<tr>
<td>Alkalinitet mekv/l</td>
<td>0,11</td>
<td>0,19</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>N-tot µg/l</td>
<td>325</td>
<td>1250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO<sub>2</sub>+NO<sub>3</sub>-N µg/l</td>
<td>46,1</td>
<td>364</td>
<td>47,7</td>
<td></td>
</tr>
<tr>
<td>NH<sub>4</sub>-N µg/l</td>
<td>255</td>
<td>554</td>
<td>28,6</td>
<td></td>
</tr>
<tr>
<td>P-tot µg/l</td>
<td>8,84</td>
<td>96,2</td>
<td>12,1</td>
<td></td>
</tr>
<tr>
<td>PO₄-P µg/l</td>
<td>3,2</td>
<td>14,2</td>
<td>3,41</td>
<td></td>
</tr>
<tr>
<td>Färg Pt/l</td>
<td>104</td>
<td>84,9</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Suspenderat material mg/l</td>
<td>2,7</td>
<td>77,2</td>
<td>41,3</td>
<td>4,28</td>
</tr>
<tr>
<td>TOC mg/l</td>
<td>8,47</td>
<td>13,3</td>
<td>9,4</td>
<td>11,7</td>
</tr>
<tr>
<td>Konduktivitet mS/m</td>
<td>2,73</td>
<td>4,79</td>
<td>2,84</td>
<td></td>
</tr>
</tbody>
</table>

Klass

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

32
Diskussion

Provpunkternas placering

Kontrollprogrammen för torvtäkternas påverkan på recipienterna. Den principiellt bästa och mest kostnadseffektiva placeringen av provpunkter för att upptäcka påverkan på recipienten är att ha en provpunkt innan torvtäkten, en i sedimentationsdammens utlopp och en nedströms torvtäkten. Skråttmyrans kontrollprogram (Figur 3) har den bästa utformningen av de torvtäkter som analyserats i det här arbetet. Referens ligger uppströms torvtäkten i samma vattendrag som utloppet och en provpunkt nedströms, som inte påverkas av andra större biflöden. Stormyran-Sidskogen har den näst bästa utformningen (Figur 4) där referensen är placerad i ett vattendrag som rinner igenom samma myr som torvtäkten fast i en opåverkad del av myren. Mellan referensen och stationen nedströms tillrinner torvtäktens vatten, vilket innebär att täktens påverkan på recipienten kan detekteras. Viktigt är att inget annat större biflöde påverkar vattendraget mellan referensen och stationen nedströms i recipienten. Detta problem har utformningen vid Karinmossen (Figur 1) där recipienten påverkas av Getboån som rinner samman med Ålboån innan nedströms B. Utan mätningar i Getboån går det inte att analysera effekten av täkten. Höga flöden i Ålboån skulle dessutom kunna leda till att vatten tränger in i utloppsdiket från Karinmossen och påverkar provresultaten för nedströms A. Även Näsmyrans mätstation vid nedströms B (Figur 5) är placerad så att den påverkas av ett större biflöde som avvattnar jordbruksmark.

Norrbornomure saknar referensstation, vilket gör att man inte kan göra någon kvantitativ bedömning av hur mycket torvtäkten påverkat recipienten. Av den anledningen diskuterar inte Norrbornomure mera i detta arbete.

Mätprogrammens utformning

I fråga om vilka kemiska parametrar som borde analyseras vid torvtäkterna tycker jag man bör fortsätta med dem som insamlats sedan början av 80-talet.
Vad som ska tas i åtanke när denna diskussion läses är att den baseras på prov som tas endast tre till fem gånger per år och endast under produktionssäsongen. Vid höga flöden under andra tider av året kan eventuellt betydande mängder näring och suspenderat material lämna torvtäkterna utan att det fångas upp av mätprogrammen. För att få en bild av hur suspenderat material påverkar recipienterna bör därför vattenprover tas både vid hög- och lågflöden, d.v.s. även när produktionen vid taktorna inte är igång. Mätprogrammen borde dessutom kompletteras med vattenföringsmätningar för att kunna beräkna hur stora mängder av olika ämnen som lakas ur torvområdet. Detta skulle ge en bättre bild på hur mycket en torvtäkt påverkar recipienten i förhållande till andra källor. Ett lägsta krav borde vara att vattenföringen registreras när man insamlar vattenproverna för att ge en bild av mängden som lakas ut vid olika flöden. Det optimala vore att ta dagliga prover i samband med höst- och vårflöden för att analysera hur stora mängder av de kontrollerade parametrarna som lakas ut under sådana episoder.

Sedimentationsdammarnas funktion

Skulle övriga sedimentationsdamm visa samma effekt på totalkväve, ammonium och pH om dessa ämnen hade analyserats? Vilka är effekterna på totalfosfor och fosfat? Om en bättre bild på torvtäktarnas sedimentationsdammars funktion eftersträvas, borde analys av samma parametrar i inlopp och utlopp ske som i recipientkontrollen, och med samma frekvens.

Torvtäkternas påverkan på recipienterna

De fyra täkterna som diskuterats vidare i arbetet uppresade högre halter av totalkväve och ammonium i utloppet från tåkten jämfört med i referensen. Med undantag för Karinmosse sen var även nitrat- och totalfosforhalterna högre i tåktternas utlopp. Vid tre täkter (se nedan) var konduktivitet, alkalinitet, färg och TOC högre i utloppet än vid referensen medan två täkter uppresade högre halter av suspenderat material och fosfat. Därmed kan man förkasta hypotesen att det inte föreligger någon statistisk signifikant skillnad i vattenkemi mellan provpunkterna inom samma torvtäkt.
• **Stormyran-Sidskogen** hade högre konduktivitet, alkalinitet, färg, TOC, suspenderat material, ammonium, nitrat, nitrit, totalkväve och totalfosfor i utloppet jämfört med referens.

• **Karimossen** hade högre konduktivitet, alkalinitet, färg, TOC, ammonium, totalkväve och suspenderat material i utloppet jämfört med referens.

• **Skrättmyran** hade högre pH, alkalinitet, färg, TOC, ammonium, nitrat-nitrit, totalkväve, fosfat och totalfosfor i utloppet jämfört med referens.

• ** Näsmyran** hade högre konduktivitet, ammonium, nitrat-nitrit, totalkväve, fosfat, totalfosfor och suspenderat material i utloppet jämfört med referens.

När det organiska materialet i tvrvtäkter mineraliseras frigörs baskatjonen vilket bidrar till att vattnet får högre alkalinitet och pH (Grip och Rodhe, 1994). Vid dikning av torvmark sker en höjning av vattnets pH ofta med ungefär en enhet (Prévost m.fl., 1999). Ett läckage av basiska ämnen observerades från tre tvrvtäkter (Stormyran-Sidskogen, Karimossen och Skrättmyran). Färg och TOC uppvisade också högre halter i utloppen vid dessa täkter. I torvmarkernas övre lager finns det en stor mängd låghumifierad torv som är mer lättnedbrytbar än den höghumifierade torven i de djupare lagren (Grip och Rodhe, 1994). Att dessa tvrvtäkter urlakar höga halter organiskt material kan bero på en nedbrytning av låghumifierade torv. Generellt uppvisade även referensstationerna höga halter av både färg och TOC, vilket tyder på att avrinningsområdena har höga humushalter.

Dräneringsvattnen från tvrvtäkterna i Näsmyran, Stormyran-Sidskogen, och Skrättmyran uppvisade förhöjda halter totalfosfor jämfört med referensererna. Fosforhalterna styrs av hur mycket gammalt grundvatten som urlakas från tvrvtäkterna och hur stor andel suspenderat material som lämnar täkten (Klöve, 2000). Av de studerade täkterna hade utloppet i Näsmyran de högsta medelhalterna totalfosfor och suspenderat material. Samtliga tvrvtäkter uppvisade skillnader mellan utloppen och någon av de efterkommande provpunkterna för suspenderat material. Skrättmyran stack ut med att ha den högsta halten suspenderat material nedströms B, vilket indikerar att bidraget kommer från det biflöde som mynnar uppströms mätstationen och som inte övervakas. Att det föreligger en skillnad mellan provstationerna kan även bero på att sedimentation kan ha skett. Studier har visat
att susponderat material sedimentera nedströms torvtäkterna, ofta med en mineralfraktion närmast torvtäkten och en organisk fraktion längre nedströms i vattendraget (Westling och Bengtsson, 1991).

Vattenkvaliteten enligt Naturvårdsverkets bedömningsgrunder (1999)

Skråttmyrans totalkvävehalter var höga i nedströms A, nedströms B och referens (klass 3), i utloppet och inloppet var halterna mycket höga (klass 4). Skråttmyrans referens hade en måttligt hög totalfosforhalt (klass 2) medan utlopp och nedströms provpunkter hade höga halter (klass 3). TOC i utloppet klassades som mycket hög halt (klass 5), övriga provpunkter uppvissade höga halter (klass 4). Täkten påverkar recipienten med förhöjd halter av fosfor.

För pH var vattnet i referensen och nedströms torvtäkten svagt sura (klass 2) och värdet i utloppet var nära neutralt. Referensen hade en god buffertkapacitet (klass 2) medan resterande provpunkter (inlopp, utlopp, nedströms A och nedströms B) uppvissade en mycket god buffertkapacitet. Recipienten påverkas med att få en bättre buffringsförmåga och mot ett neutralare pH.

Stormyran-Sidskogens totalkvävehalter varierade från låg halt (klass 1) i referens, till hög halt (klass 3) i utlopp, medan nedströms B hade måttligt höga halter (klass 2). Totalfosfor i referensen uppvissade en låg halt (klass 1), i utlopp en måttligt hög halt (klass 2) medan i nedströms B återfanns en låg halt (klass 1). Färg uppvissade betydligt färgat vatten (klass 4) i referens och nedströms A, och starkt färgat vatten (klass 5) i utloppet. TOC halten i referensen och utloppet var måttligt höga (klass 3), i inlopp återfanns en hög halt (klass 4) medan i nedströms A var halten låg (klass 2). Stormyran-Sidskogen påverkar sin recipient med tillskott av kväve enligt Naturvårdsverkets bedömningsgrunder.

Vattnets pH i referens och utlopp var svagt sura (klass 2) och i nedströms B var vattnet nära neutralt (klass 2). Alkaliniteten i referens och nedströms B uppvissade en god buffertkapacitet (klass 2), utloppet låg en klass högre med en mycket god buffertkapacitet (klass 1). Buffertstatusen i utloppet kan leda till förbättring av recipientens buffringsförmåga. Att en klass högre pH återfanns i nedströms B än vid resterande provpunkter kan bero på påverkan från närliggande tillflöde.

Nämsmyrans totalkvävehalter i referens och nedströms B var måttligt höga (klass 2), i utloppet var totalkvävehalterna höga (klass 3). Referens och nedströms B hade låga halter (klass 1) av totalfosför medan utloppet hade mycket höga halter totalfosfor (klass 4). Anmärkningsvärt för färg är att det finns starkt färgat vatten klass 5 i referens och nedströms B medan utloppet har en klass lägre, klass 4 (betydligt färgat vatten), men dock nära gränsen till starkt färgat vatten. För TOC har inloppet en hög halt (klass 4). Utlopp, referens och nedströms B har måttligt hög halt (klass 3).
Nedströms B har en TOC halt på 11,7 mg/l vilket ligger nära gränsen till en hög halt (12 mg/l) av TOC.

Resultatet av bedömningsgrunderna indikerar att torvtäkterna bidrar till en gädning av recipientvattendragen. Utloppen uppvisar högre totalkvävehalter än referenserna för samtliga torvtäkter, fosfor uppvisar högre halter i utloppen i jämfört med referenserna för tre av täkterna. En täkt (Skrättmyran) uppvisade högre halter av syretärande ämnen (TOC) än referensen. För Stormyran-Sidskogen var vattnet i utloppet mer färgat än resterande provpunkter för den täkten. Om ytterligare reduceringsåtgärder ska vidtas bör dessa göras med avseende på att minska andelen kväve och fosfor som lämnar torvtäkterna.

Sammanfattade förslag till förändringar av kontrollprogrammen

Referenser

Hånell, B. 2006. Dikad skogsmark och myr med djup torv som resurser för utåtligt torvbruk i Sverige, projektrapport Nr 5. Institutionen för skogsskötsel, SLU.

Klöve, B. 2000. Retention of suspended solids and sediment bund nutrients from peat harvesting sites with peak runoff control, constructed floodplains and sedimentation ponds. Boreal environment research. ISSN 1239-6095

Internetadresser

Tukey HSD test. Hämtat 2006-06-09
http://www.statsoft.com/textbook/stathome.html

Bedömningsgrunder för sjöar och vattendrag. Hämtat 2006-06-09
www.naturvardsverket.se

Torvfakta Hämtat 2006-06-09
http://www.torvforsk.se/torvfakta.html

Torvfakta Hämtat 2006-06-12
http://www.rasjotorv.se/lang-se/produkter.html

Torvfakta hämtat den 2006-11-29
http://www.scb.se/templates/tableOrChart___92296.asp

Ett stort TACK till:

Stefan Löfgren (SLU)
Joakim Dahl (Lst Gävleborg)
Jan-Åke Johansson (Lst Gävleborg)
Regina Jönsson m.fl. (Neova)
Lars Lundin (SLU)

För all hjälp!
Bilagor

Bilaga 1

Omräkning av COD_{Cr} till TOC

För att räkna om COD_{Cr} till TOC så användes följande samband: 1 mg/l TOC = 1/3,5 mg/l COD_{Cr} d.v.s 20 mg/l COD_{Cr} = (20/3,5=) 5,71 mg/l TOC

Bilaga 2

Bedömningsgrunder för sjöar och vattendrag

Grön färg motsvarar klass 1 enligt Naturvårdsverkets bedömningsgrunder för sjöar och vattendrag (Rapport 4913, Naturvårdsverket).

Bäst	1	2	3	4	5	*Sämst*

Fosfor i sjöar

<table>
<thead>
<tr>
<th>Klass</th>
<th>Benämning</th>
<th>Totalfosfor (µg/l)</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>maj–okt</td>
<td>augusti</td>
</tr>
<tr>
<td>1</td>
<td>Låghalt</td>
<td>< 12,5</td>
<td>< 12,5</td>
</tr>
<tr>
<td>2</td>
<td>Måttligt hög halt</td>
<td>12,5–25</td>
<td>12,5–23</td>
</tr>
<tr>
<td>3</td>
<td>Höghalt</td>
<td>25–50</td>
<td>23–45</td>
</tr>
<tr>
<td>4</td>
<td>Mycket höghalt</td>
<td>50–100</td>
<td>45–96</td>
</tr>
<tr>
<td>5</td>
<td>Extremt höghalt</td>
<td>> 100</td>
<td>ej def.</td>
</tr>
</tbody>
</table>

Kväve i sjöar

<table>
<thead>
<tr>
<th>Klass</th>
<th>Benämning</th>
<th>Totalkväve (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>maj–oktober</td>
</tr>
<tr>
<td>1</td>
<td>Låghalt</td>
<td>< 300</td>
</tr>
<tr>
<td>2</td>
<td>Måttligt höghalt</td>
<td>300–625</td>
</tr>
<tr>
<td>3</td>
<td>Höghalt</td>
<td>625–1250</td>
</tr>
<tr>
<td>4</td>
<td>Mycket höghalt</td>
<td>1250–5000</td>
</tr>
<tr>
<td>5</td>
<td>Extremt höghalt</td>
<td>> 5000</td>
</tr>
</tbody>
</table>
Organiskt material (syretärande ämnen)

<table>
<thead>
<tr>
<th>Klass</th>
<th>Benämning</th>
<th>Halt av TOC eller COD$_{mn}$ (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mycket låg halt</td>
<td>< 4</td>
</tr>
<tr>
<td>2</td>
<td>Låg halt</td>
<td>4–8</td>
</tr>
<tr>
<td>3</td>
<td>Måttligt hög halt</td>
<td>8–12</td>
</tr>
<tr>
<td>4</td>
<td>Hög halt</td>
<td>12–16</td>
</tr>
<tr>
<td>5</td>
<td>Mycket hög halt</td>
<td>< 16</td>
</tr>
</tbody>
</table>

Vattenfärg

<table>
<thead>
<tr>
<th>Klass</th>
<th>Benämning</th>
<th>Absorbans (vid 420 nm)</th>
<th>Färgering (mg Pt/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ej eller obetydligt färgat vatten</td>
<td>< 0,02</td>
<td>< 10</td>
</tr>
<tr>
<td>2</td>
<td>Svagt färgat vatten</td>
<td>0,02–0,05</td>
<td>10–25</td>
</tr>
<tr>
<td>3</td>
<td>Måttligt färgat vatten</td>
<td>0,05–0,12</td>
<td>25–60</td>
</tr>
<tr>
<td>4</td>
<td>Betydligt färgat vatten</td>
<td>0,12–0,2</td>
<td>60–100</td>
</tr>
<tr>
<td>5</td>
<td>Starkt färgat vatten</td>
<td>> 0,2</td>
<td>> 100</td>
</tr>
</tbody>
</table>
Alkalinitet

<table>
<thead>
<tr>
<th>Klass</th>
<th>Benämning</th>
<th>Alkalinitet (mekv/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mycket god buffertkapacitet</td>
<td>> 0,20</td>
</tr>
<tr>
<td>2</td>
<td>God buffertkapacitet</td>
<td>0,10–0,20</td>
</tr>
<tr>
<td>3</td>
<td>Svag buffertkapacitet</td>
<td>0,05–0,10</td>
</tr>
<tr>
<td>4</td>
<td>Mycket svag buffertkapacitet</td>
<td>0,02–0,05</td>
</tr>
<tr>
<td></td>
<td>Ingen eller obetydlig buffertkapacitet</td>
<td>< 0,02</td>
</tr>
</tbody>
</table>

pH-värde

<table>
<thead>
<tr>
<th>Klass</th>
<th>Benämning</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nära neutral</td>
<td>> 6,8</td>
</tr>
<tr>
<td>2</td>
<td>Svagt surt</td>
<td>6,5–6,8</td>
</tr>
<tr>
<td>3</td>
<td>Måttligt surt</td>
<td>6,2–6,5</td>
</tr>
<tr>
<td>4</td>
<td>Surt</td>
<td>5,6–6,2</td>
</tr>
<tr>
<td>5</td>
<td>Mycket surt</td>
<td>< 5,6</td>
</tr>
</tbody>
</table>
Bilaga 3

Antal prov/provpunkt
Antal prov per provpunkt som är använda i analyserna som gjorts i projektet.

<table>
<thead>
<tr>
<th>Provpunkt</th>
<th>Parameter</th>
<th>Antal prov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karinmossen, utlopp</td>
<td>N-tot µg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>COD₉₅ mg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>48</td>
</tr>
<tr>
<td>Karinmossen, referens B</td>
<td>N-tot µg/l</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/l</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>COD₉₅ mg/l</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>84</td>
</tr>
<tr>
<td>Karinmossen, nedströms A</td>
<td>N-tot µg/l</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/l</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>COD₉₅ mg/l</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>83</td>
</tr>
<tr>
<td>Karinmossen, nedströms B</td>
<td>N-tot µg/l</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/l</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>COD₉₅ mg/l</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>75</td>
</tr>
<tr>
<td>Provpunkt</td>
<td>Parameter</td>
<td>Antal prov</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Norrbomuren, nedströms A</td>
<td>N-tot µg/l</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/l</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>CODₐₗ mg/l</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>73</td>
</tr>
<tr>
<td>Norrbomuren, utlopp</td>
<td>N-tot µg/l</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>CODₐₗ mg/l</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>68</td>
</tr>
<tr>
<td>Näsmyran, referens B</td>
<td>N-tot µg/l</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/l</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>CODₐₗ mg/l</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>70</td>
</tr>
<tr>
<td>Näsmyran, nedströms B</td>
<td>N-tot µg/l</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/l</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>CODₐₗ mg/l</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>70</td>
</tr>
<tr>
<td>Provpunkt</td>
<td>Parameter</td>
<td>Antal prov</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Näsmyran, utlopp</td>
<td>N-tot µg/l</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>NH₃-N µg/l</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>COD₅₆₅ mg/l</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Färg mgPt/l</td>
<td>68</td>
</tr>
<tr>
<td>Skråttmyran, referens A</td>
<td>N-tot µg/l</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>NH₃-N µg/l</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>COD₅₆₅ mg/l</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>83</td>
</tr>
<tr>
<td>Skråttmyran, nedströms A</td>
<td>N-tot µg/l</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>NH₃-N µg/l</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>COD₅₆₅ mg/l</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>84</td>
</tr>
<tr>
<td>Skråttmyran, nedström B</td>
<td>N-tot µg/l</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>NH₃-N µg/l</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>COD₅₆₅ mg/l</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>84</td>
</tr>
<tr>
<td>Provpunkt</td>
<td>Parameter</td>
<td>Antal prov</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Skråttmyran, utlopp</td>
<td>N-tot µg/l</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>CODₐₘₜ mg/l</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>27</td>
</tr>
<tr>
<td>Stormyran-Sidskogen, nedströms B</td>
<td>N-tot µg/l</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>CODₐₘₜ mg/l</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>129</td>
</tr>
<tr>
<td>Stormyran-Sidskogen, referens B</td>
<td>N-tot µg/l</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>CODₐₘₜ mg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>74</td>
</tr>
<tr>
<td>Stormyran-Sidskogen, utlopp</td>
<td>N-tot µg/l</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>PO₄-P µg/l</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>CODₐₘₜ mg/l</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>63</td>
</tr>
<tr>
<td>Provpunkt</td>
<td>Parameter</td>
<td>Antal prov</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Karinmossen, inlopp</td>
<td>pH</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>N-tot µg/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PO₄³⁻-P µg/l</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>1</td>
</tr>
<tr>
<td>Norrbomuren, inlopp</td>
<td>pH</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>N-tot µg/l</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PO₄³⁻-P µg/l</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>1</td>
</tr>
<tr>
<td>Näsmyran, inlopp</td>
<td>pH</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>N-tot µg/l</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>PO₄³⁻-P µg/l</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>16</td>
</tr>
<tr>
<td>Skråttmyran, inlopp</td>
<td>pH</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>N-tot µg/l</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N µg/ll</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>NH₄-N µg/l</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>P-tot µg/l</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>PO₄³⁻-P µg/l</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>98</td>
</tr>
<tr>
<td>Provpunkt</td>
<td>Parameter</td>
<td>Antal prov</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Stormyran-Sidskogen, inlopp</td>
<td>pH</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Alkalinitet mekv/l</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>N-tot μg/l</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>NO₂+NO₃-N μg/l</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>NH₄-N μg/l</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>P-tot μg/l</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>PO₄-P μg/l</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Färg mg Pt/l</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Suspenderande ämnen mg/l</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>TOC mg/l</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Konduktivitet mS/m</td>
<td>23</td>
</tr>
</tbody>
</table>